Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Iran J Biotechnol ; 17(2): e1982, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31457053

RESUMO

BACKGROUND: In consideration for the increasing widespread use of genetically modified (GM) crops, one of the important issues for assessment is the effect of GM crops on soil microbial communities. OBJECTIVES: In this study, T2 chitinase-transgenic cotton (line #57) and its non-transgenic line were investigated for bacterial and fungal dynamics during its development stages. MATERIAL AND METHODS: The assessments were performed by viable plate count and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) assays. RESULTS: Viable plate count analysis showed an increase in community structures and the number of culturable bacteria in rhizosphere of both transgenic and non-transgenic cultivars as compared to bulk soil. PCR-DGGE confirmed results of viable plate count assays of the changes in bacterial and fungal communities for all cotton development stages in rhizosphere and bulk zones. No significant differences in number of functional bacteria were observed between rhizosphere soil of chitinase transgenic and non-chitinase transgenic cotton at one particular stage. CONCLUSIONS: The results indicated that T2 chitinase-transgenic cotton (line #57) might have no adverse effects on community structures and total number of culturable bacteria and fungi in the rhizosphere.

2.
BMC Plant Biol ; 19(1): 300, 2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31288738

RESUMO

BACKGROUND: Salinity is a major abiotic stress that limits the growth, productivity, and geographical distribution of plants. A comparative proteomics and gene expression analysis was performed to better understand salinity tolerance mechanisms in chickpea. RESULTS: Ten days of NaCl treatments resulted in the differential expression of 364 reproducible spots in seedlings of two contrasting chickpea genotypes, Flip 97-43c (salt tolerant, T1) and Flip 97-196c (salt susceptible, S1). Notably, after 3 days of salinity, 80% of the identified proteins in T1 were upregulated, while only 41% in S2 had higher expression than the controls. The proteins were classified into eight functional categories, and three groups of co-expression profile. The second co-expressed group of proteins had higher and/or stable expression in T1, relative to S2, suggesting coordinated regulation and the importance of some processes involved in salinity acclimation. This group was mainly enriched in proteins associated with photosynthesis (39%; viz. chlorophyll a-b binding protein, oxygen-evolving enhancer protein, ATP synthase, RuBisCO subunits, carbonic anhydrase, and fructose-bisphosphate aldolase), stress responsiveness (21%; viz. heat shock 70 kDa protein, 20 kDa chaperonin, LEA-2 and ascorbate peroxidase), and protein synthesis and degradation (14%; viz. zinc metalloprotease FTSH 2 and elongation factor Tu). Thus, the levels and/or early and late responses in the activation of targeted proteins explained the variation in salinity tolerance between genotypes. Furthermore, T1 recorded more correlations between the targeted transcripts and their corresponding protein expression profiles than S2. CONCLUSIONS: This study provides insight into the proteomic basis of a salt-tolerance mechanism in chickpea, and offers unexpected and poorly understood molecular resources as reliable starting points for further dissection.


Assuntos
Cicer/fisiologia , Proteínas de Plantas/metabolismo , Proteômica , Cicer/genética , Regulação da Expressão Gênica de Plantas , Genótipo , Fotossíntese , Proteínas de Plantas/genética , Salinidade , Tolerância ao Sal , Plântula/genética , Plântula/fisiologia , Estresse Fisiológico
3.
PLoS One ; 14(6): e0218381, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31233531

RESUMO

Male sterility (induced or natural) is a potential tool for commercial hybrid seed production in different crops. Despite numerous endeavors to understand the physiological, hereditary, and molecular cascade of events governing CMS in cotton, the exact biological process controlling sterility and fertility reconstruction remains obscure. During current study, RNA-Seq using Ion Torrent S5 platform is carried out to identify 'molecular portraits' in floral buds among the Cytoplasmic Genic Male Sterility (CGMS) line, its near-isogenic maintainer, and restorer lines. A total of 300, 438 and 455 genes were differentially expressed in CGMS, Maintainer, and Restorer lines respectively. The functional analysis using AgriGo revealed suppression in the pathways involved in biogenesis and metabolism of secondary metabolites which play an important role in pollen and anther maturation. Enrichment analysis showed dearth related to pollen and anther's development in sterile line, including anomalous expression of genes and transcription factors that have a role in the development of the reproductive organ, abnormal cytoskeleton formation, defects in cell wall formation. The current study found aberrant expression of DYT1, AMS and cytochrome P450 genes involved in tapetum formation, pollen development, pollen exine and anther cuticle formation associated to male sterility as well as fertility restoration of CGMS. In the current study, more numbers of DEGs were found on Chromosome D05 and A05 as compared to other chromosomes. Expression pattern analysis of fourteen randomly selected genes using qRT-PCR showed high concurrence with gene expression profile of RNA-Seq analysis accompanied by a strong correlation of 0.82. The present study provides an important support for future studies in identifying interaction between cyto-nuclear molecular portraits, to accelerate functional genomics and molecular breeding related to cytoplasmic male sterility studies in cotton.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Gossypium/crescimento & desenvolvimento , Gossypium/genética , Infertilidade das Plantas/genética , Pólen/crescimento & desenvolvimento , Pólen/genética , Cromossomos de Plantas/genética , Flores/genética , Ontologia Genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma/genética
4.
Iran J Basic Med Sci ; 22(1): 80-85, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30944712

RESUMO

OBJECTIVES: The purpose of this study was to evaluate variations in yields, volatile composition and biological activities of essential oils (EOs) obtained from the aerial parts of Zhumeria majdae collected from five localities of the south of Iran. MATERIALS AND METHODS: The EOs were analyzed using gas chromatography and gas chromatography-mass spectrometry techniques. The antioxidant activity of the EOs was tested using DPPH and ß-carotene/linoleic acid assays. In vitro cytotoxicity was tested against two cancer cell lines (A375 and MCF7) using MTT assay. RESULTS: The oils yield varied from 6.3% (S2) to 10.2% (V/W) (S4). All of five investigated EOs samples presented three major compounds: linalool (24.4-34.6%), camphor (26.1-34.7%) and trans-linalool oxide (7.6-28.6%). Although the main constituents were common, their percentages were different. Among samples, S1 had a better antioxidant activity in both DPPH and ß-carotene/linoleic acid methods (IC50= 8.01 and 11.77 mg/ml, respectively). In vitro cytotoxicity against two cancer cell lines of human melanoma cell line (A375) and breast cancer cell line (MCF7), showed a moderate cytotoxicity of S3 against A375 cells with IC50 value of 624 µg/ml. CONCLUSION: Tangezagh (S4) plant materials revealed the highest level of oil yield as the region is recommended for collecting the plant samples.Taken together, despite the weak antioxidant and moderate cytotoxic activities of tested EOs, this study suggested a proper potential for possible use of the EOs of Z. majdae for pharmaceutical and perfume industries.

5.
Electron. j. biotechnol ; 19(4): 38-43, July 2016. ilus
Artigo em Inglês | LILACS | ID: lil-793951

RESUMO

Background: Newcastle disease is an important avian infectious disease that brings about vast economic damage for poultry industry. Transgenic plants represent a cost-effective system for the production of therapeutic proteins and are widely used for the production of poultry vaccines. In an attempt to develop a recombinant vaccine, a plant expression binary vector pBI121, containing the genes encoding Hemagglutinin-Neuraminidase (HN) and Fusion (F) epitopes of Newcastle Disease Virus (NDV) under the control of CaMV35S promoter and NOS terminator was constructed and introduced into the tobacco ( Nicotiana tabacum) plant by Agrobacterium-mediated transformation. Results: Putative transgenic plants were screened in a selection medium containing 50 mg/L kanamycin and 30 mg/L meropenem. Integration of the foreign gene in plant genome was confirmed by PCR. Expression of foreign gene was analyzed at transcription level by RT-PCR and at translation level by means of dot blotting and ELISA. All analyses confirmed the expression of recombinant protein. Conclusion: Developments in genetic engineering have led to plant-based systems for recombinant vaccine production. In this research, tobacco plant was used to express F and HN epitopes of NDV. Our results indicate that for the production of recombinant vaccine, it is a novel strategy to use concatenated epitopes without their genetic fusion onto larger scaffold structure such as viral coat protein.


Assuntos
Vírus da Doença de Newcastle , Vacinas Sintéticas , Proteína HN , Plantas Geneticamente Modificadas , Tabaco , Ensaio de Imunoadsorção Enzimática , Reação em Cadeia da Polimerase , Agrobacterium tumefaciens , Epitopos
6.
Mol Biol Res Commun ; 4(1): 43-55, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27843995

RESUMO

Out of fifty-two Iranian nonaflatoxigenic strains of Aspergillus flavus,collected from various substrates (soil and kernel) and sources (peanut, corn and pistachio), fifteen representatives were selected according to their different geographical origins (six provinces: Guilan and Golestan, Ardebil, Fars, Kerman and Semnan) and vegetative compatibility groups (VCGs, IR1 to IR15) for microsatellite-primed PCR analysis. Two inter-simple sequence repeat (ISSR) primers AFMPP and AFM13 were used to determine polymorphism and the relationship among strain isolates. A. flavus isolates were identified by their morphologies and their identities were confirmed by PCR amplification using the specific primer pair ITS1 and ITS4. The results revealed variations in the percentages of polymorphisms. In the ISSR analysis, primers AFMPP and AFM13 generated a total of 18 and 23 amplicons among the fungal strains, out of which 12 (66.7%) and 22 (95.7%) were polymorphic, respectively. Cluster analysis of the ISSR data was carried out using 1 D DNA gel image analysis. The two dendrograms obtained through these markers showed six different clusterings of testing nonaflatoxigenic A. flavus L strains, but we noticed that some clusters were different in some cases. The microsatellite-primed PCR data revealed that the Iranian nonaflatoxigenic isolates of A. flavus were not clustered according to their origins and sources. This study is the first to characterize Iranian nonaflatoxigenic isolates of A. flavus using ISSR markers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...